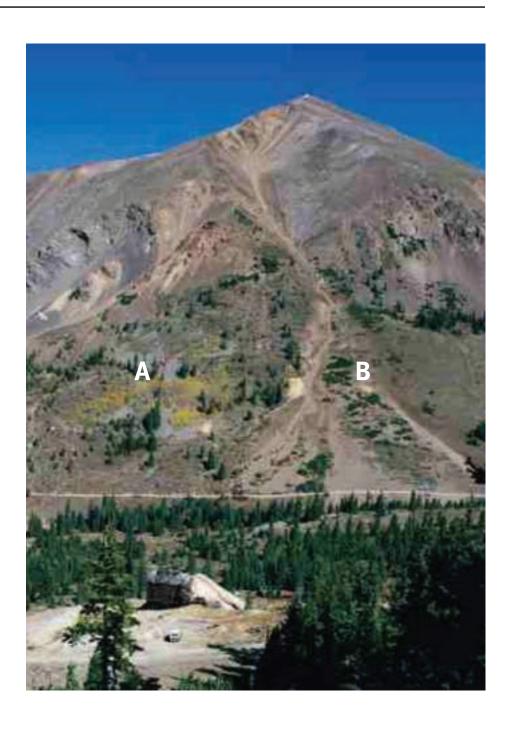


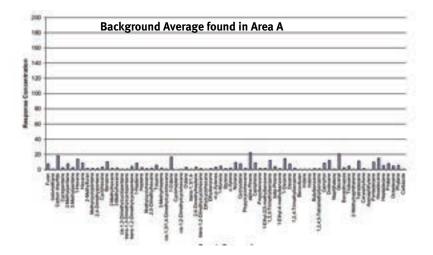
BURIED POLYMETALLIC VEIN

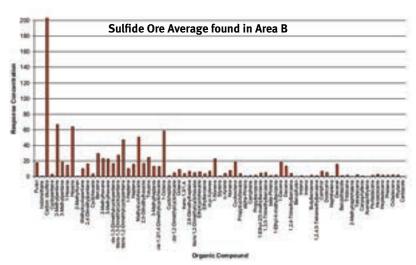
Mineralization

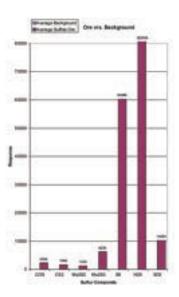
The mineralization consists of vuggy quartz, pyrite, sphalerite, galena, carbonate minerals, and trace amounts of barite.


Alteration includes limonite-jarosite oxidation of Fe-bearing minerals in the quartz vein material and in the granite gneiss host rock, and argillic alteration of feldspars.

Survey Design:


Survey area ~ 0.5 mi2. (20) samplers were installed over two different areas (A and B), ten (10) in each area.


Area A is the control area and it is characterized as a sub-alpine forest adjacent to the vein area, which does not contain any known sulfide mineralization.


Area B is characterized as a polymetalic vein zone covered with talus, colluvium and avalanche deposits.

This test clearly detected and differentiated the non-mineralized area from the buried polymetallic vein mineralization

Organic Compound Results

The following organic compounds were detected in higher concentrations in samples installed above the buried vein.

- 2-Methylpentane
- 3-Methylpentane
- Methylcyclopentane
- 2,4-Dimethylpentane
- 2-Methylhexane
- 3-Methylhexane
- Methylcyclohexane

These compounds were detected in very low concentrations in the background samples

Sulfur Compounds

The following sulfur compounds were detected in high concentrations in samples installed above the buried vein.

- Hydrogen sulfide (H₂S),
- Carbonyl sulfide (COS),
- Carbon disulfide (CS₂),
- Sulfur dioxide (SO₂),
- Dimethydisulfide (Me₂S₂),
- Dimethyltrisulfide (Me₂S₃), and
- Elemental sulfur (S₈)

No sulfur compounds were detected in the background samples.

210 Executive Drive Suite 1, Newark, DE 19702 Phone: +1.302.266.2428 Fax: +1.302.266.2429

Email: info@agisurveys.net www.agisurveys.net